Indian Statistical Institute, Bangalore B. Math II, First Semester, 2022-23 Back Paper Examination, Introduction to Statistical Inference 21.11.22 Maximum Score 85 Duration: 3 Hours

- 1. (10) Let X_1, \dots, X_n be iid observations from population with mean μ and variance σ^2 .
 - (a) Show that the estimator $\sum_{i=1}^{n} a_i X_i$ is unbiased for μ iff $\sum_{i=1}^{n} a_i = 1$
 - (b) Among all estimators of the above form find the one with minimum variance.
- 2. (20) Let ϕ_1 and ϕ_2 be bivariate normal densities with means zero, variances 1 and correlation coefficients 0 and 1/2 respectively. Suppose (X, Y) has the bivariate density $\frac{1}{2}(\phi_1 + \phi_2)$. Find the pdfs of X, Y and X + Y. Conclude that (X, Y) is not bivariate normal but the marginals are univariate normal.
- 3. (5+3+7+5) Let X_i, \dots, X_n be iid Poisson (λ) random variables.
 - (a) Find the method of moments estimator of λ based on the first moment.
 - (b) Show that the estimator is consistent.
 - (c) Show that $\sqrt{n}(\sqrt{\hat{\lambda}} \sqrt{\lambda})$ converges in distribution to $\mathcal{N}(0, 1/4)$.
 - (d) Find an asymptotic (1α) level confidence interval for λ using (c).
- 4. (5+5+5+5) Let X_1, X_2, \dots, X_n be a random sample from $\mathcal{N}(5, \sigma^2)$ where σ^2 is unknown.
 - (a) Consider testing $H_0: \sigma^2 = 1$ versus $H_1: \sigma^2 = 2$. Find the most powerful test at level 5%.
 - (b) Show that the family of densities possesses Monotone Likelihood Ratio property.
 - (c) Derive Uniformly Most Powerful test of level 5% for testing $H_0: \sigma^2 \leq 1$ versus $H_1: \sigma^2 > 1$.
 - (d) Is the test in part (c) unbiased? Justify your answer.
- 5. (15) Let X_1, \dots, X_n be iid Unif $(\theta, 2\theta)$. Find the generalized likelihood ratio test for testing $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$ at level α . Find the critical region explicitly in terms of α, n and θ_0 .